Measurement of charm and bottom contributions to electrons from heavy quark decay at RHIC-PHENIX experiment

Ryohji Akimoto (CNS, Univ. of Tokyo) for the PHENIX Collaboration

Outline

- Introduction
- Heavy quark measurement
 - experimental setup
 - background evaluation
 - measurement of bottom fraction
- Result
- Summary

Heavy quark (charm, bottom)

- Heavy quark
 - created by initial hard collisions
 - → Interaction between parton & QGP can be clearly extracted.
- The interaction depends on many factors.
 - → Multiple information is necessary to test interaction models & to extract QGP properties.
- Experimental results
 - measurement of heavy quark electron : c+b→e
 - direct reconstruction of charm : D→Kπ, Kππ
 - high momentum bottom : B→J/ψ+X, b-jet

We measure both charm & bottom contributions in e[±] from heavy quark decay via direct measurement of c/b ratio.

Measurement of charm & bottom

- charm & bottom measurement : measure electron/positron from semi-leptonic decay.
- Distance of Closest Approach (DCA)
 - c/b contributions are evaluated with DCA distribution.
 - depends on life-time and q-value of parent hadrons.
 - → DCA can be used to distinguish charm & bottom

√D±: cτ=311.8μm, D⁰: cτ=122.9μm

√B±: cτ=491.1μm, B⁰: cτ=457.2μm

Experimental setup

PHENIX central arm

- coverage
 - $|\eta| < 0.35 \& \Delta \phi = 90^{\circ} \times 2$
- track reco. & p_T measurement
 - Drift chamber
 - Pad chamber
- electron ID
 - EM calorimeter
 - RICH

The central arm does not have enough capability for c/b separation from DCA measurement

- detectors are located far from the collision vertex.
- → newly install silicon vertex tracker (VTX) around collision vertex point

Silicon vertex tracker (VTX)

silicon stripixel detector

Silicon Vertex Tracker (VTX)

- silicon detector with 4 layers
 - pixel detector (inner 2 layers)
 - stripixel detector (outer 2 layers)
- precise tracking & collision vertex reconstruction are done by VTX.

silicon pixel detector

Run2012 p+p (√s=200GeV)

Background evaluation

background

- photon conversion
- Dalitz decay of pseudo-scalar mesons
- Ke3
- mis-association hits created by other track.

XY-DCA distribution of inclusive electron

- XY-plane : perpendicular to beam axis
- background tail in large XY-DCA region in Au+Au collision
 - ✓ main source : photon conversion
 - ✓Large XY-DCA region is important especially for bottom yield evaluation.
 - → need rejection for e[±] from photon conversion

photon conversion rejection

photon conversion: isolation cut is effective

- isolation cut : require no hit near associated hits
- photon conversion creates e⁺e⁻ pair & opening angle ~0
 - → hits created by e⁺ & e⁻ tracks locate very near.
- Rejection fraction
 - 75% of conversion electron is rejected.
 - Only 20% is rejected by random matching at Au+Au MB.

mis-association BG

 evaluated by XY-DCA distribution with large Z-DCA (normalized by z-range)

- XY-DCA distribution at side-band well reproduces XY-DCA tail of main region.

charm, bottom : side/main~0.1%

- signal contamination is very small.

Signal v.s. Background

- R_{HF} (= e^{HF} / e^{inclusive}) is evaluated.
 - fraction of e[±] from heavy quark decay in inclusive electron.
 - R_{HF}>80% at p_T>2GeV/c
 - consistent with expectation (red square)
 - ✓ expectation : previous result + increase of material
- → Good S/N is achieved & background is evaluated well.

Invariant yield of heavy quark electron in Au+Au

- Invariant yield of heavy quark electron is evaluated with R_{HF}.
 - consistent with published result (by PHENIX).

Bottom fraction measurement : DCA decomposition

- b→e/(c→e+b→e) is evaluated by decomposing XY-DCA distribution.
 - DCA decomposition is done by fitting with templates evaluated by simulation and data.
- non-photonic electron: HF, Kaon
 - PYTHIA simulation + Gaussian convolution
 - √Gaussian mean is evaluated by GEANT simulation and sigma is DCA resolution.
- photonic electron : conversion, Dalitz
 - GEANT simulation + Gaussian fit

bottom fraction in p+p

First result of bottom fraction from DCA analysis

Comparison of result

- The result is consistent with published data. (by PHENIX & STAR)
 - published data: evaluated by e-h correlation analysis.
- FONLL calculation is consistent with the result.

bottom fraction in Au+Au

- Bottom fraction in Au+Au data is also evaluated.
 - But a missing item is found to be evaluated as a systematic error.
- missing item
 - If p_T distributions of heavy flavor hadrons are significantly modified, DCA templates are also modified.
 - ✓p_T distribution in PYTHIA with default setup is used in the decomposition analysis.
 - For p+p data, p_T distribution is not so different from PYTHIA.
 - But for Au+Au data, p_T distribution can be changed from PYTHIA.

Evaluation of this item is ongoing !!!

Summary

Charm & bottom contributions in electron from heavy quark decay is measured directly from electron DCA distribution.

• p+p

- The result of bottom fraction is consistent with the published result by PHENIX & STAR.
- FONLL calculation is consistent with the result.

Au+Au

- Effect of modification of heavy flavor hadron p_T distribution is being evaluated.

End

Backup

How were the DCA measurement used?

- DCA data are fit by background components (left column) and c→e and b→e "expected DCA" (right column)
- The fit produces relative $c \rightarrow e$ to $b \rightarrow e$ fractions

Where did the "expected DCA" distributions come from?

Where did the "expected DCA" distributions come from?

Simple Answer: For the QM Preliminary result, the analysis just used the PYTHIA output. That assumes the **PYTHIA** parent (e.g. D, B) p_T distribution and decay kinematics

The "expected DCA" b→e is a convolution of the B meson parent p_T spectrum with the electron decay kinematics and corresponding DCA

For these p_T electrons, if the parent B meson p_T distribution is significantly modified from PYTHIA, the "expected DCA" from PYTHIA will be wrong

An Extreme Example Just to Demonstrate the Point

Compare PYTHIA B meson p_T distribution (Black) and a Scenario with all B mesons at $p_T = 0$ (Red)

We said it was extreme...

Because of decay kinematics, even in the Red Scenario, one will have $B \rightarrow X \rightarrow e$ all the way out beyond electron $p_T \approx 2 \text{ GeV/c}$.

However, these electrons will all have DCA = 0 (since the B is at rest) and thus would **not** be properly extracted using the PYTHIA DCA template.

Correlation of parent p_T & electron p_T

Statistics

- FY2011
 - Au+Au (√s_{NN}=200GeV): 1.5 months
 - ✓ $\int Ldt = ~800 \mu b^{-1} (\int L^{NN} dt = ~31 pb^{-1})$
 - Au+Au (√snn=19.6GeV): 1 week
 - Au+Au (√snn=27.0GeV) : 1 week
 - p+p ($\sqrt{s}=500$ GeV) : 1 week
- FY2012
 - p+p ($\sqrt{s}=200 \text{GeV}$) : 1 month
 - √ ∫Ldt=~3.8pb⁻¹

conversion rejection

